Posts tagged as:

tuberous sclerosis

Ed note: The Obama administration is expected to unveil plans for a decade-long Brain Activity Map project next month. This is Part One of a two-part series on brain mapping.

How is information routed in the brains of children with autism? (Image: Jpatokal/Wikimedia Commons)

It’s now pretty well accepted that autism is a disorder of brain connectivity—demonstrated visually with advanced MRI techniques that can track the paths of nerve fibers. Recent exciting work analyzing EEG recordings supports the idea of altered connectivity, while suggesting the possibility of a diagnostic test for autism.

But what’s happening on a functional level? A study published this week zooms out to take a 30,000-foot view, tracking how the brain routes information in children with autism—in much the way airlines and electrical grids are mapped—and assessing the function of the network as a whole.

“What we found may well change the way we look at the brains of autistic children,” says investigator Jurriaan Peters, MD, of the Department of Neurology at Boston Children’s Hospital. Full story »

Leave a comment

A growing body of evidence from genetic and cell studies indicates that autism spectrum disorders (ASDs) result from abnormalities in how neurons connect to each other to establish brain circuitry. Striking MRI images taken at Children’s Hospital Boston, published in the January Academic Radiology, now strengthen this case visually.

Children’s neurologist-neuroscientist Mustafa Sahin, Simon Warfield, director of the hospital’s Computational Radiology Laboratory, and Jurriaan Peters compared brain organization in 29 healthy subjects with that in 40 patients with tuberous sclerosis, a rare genetic syndrome often associated with cognitive and behavioral deficits, including ASDs about 50 percent of the time. “Patients with tuberous sclerosis can be diagnosed at birth or potentially before birth, because of cardiac tumors that are visible on ultrasound, giving us the opportunity to understand the circuitry of the brain at an early age,” explains Sahin.

The panels above (click to enlarge) are advanced MRI images Full story »

1 comment

(AmberStrocel/Flickr)

Mark Bear’s research interests have taken him from studying vision in kittens to learning and memory in mouse models, and more recently, to the study of Fragile X syndrome, one of the leading genetic causes of autism and intellectual disability in humans. Along the way, he has made several ground-breaking contributions to neuroscience – one of which he described as one of MIT’s presenters at this week’s inaugural CHB-MIT Research Enterprise Symposium, which kicked off an exciting new scientific collaboration between MIT and Children’s.

I have followed Mark Bear’s work since I was an undergraduate at Brown University, where he used to teach the Introduction to Neuroscience course. That’s where I first learned about the seminal experiments in kittens (see this PDF), showing that covering one eye at birth rewires their brains not to “see” out of that eye, work that Bear was continuing to refine. Our paths crossed again more recently due to our common interest in studying autism. Full story »

1 comment

People with autism and most other disorders of brain development have never had medications to treat their core behavioral and cognitive symptoms. The best they can get are drugs targeting secondary problems, like irritability or aggression. But now, a new wave of clinical trials, such as the one we posted about yesterday for Rett syndrome, aims to change this.

In the last decade, scientists have discovered many of the molecular pathways in genetic disorders that can impair cognition and place a child on the autism spectrum—such as tuberous sclerosis complex, Rett syndrome, Fragile X syndrome and Angelman syndrome. These discoveries are suggesting targets for drug treatment, and is changing how these conditions—and perhaps neurodevelopmental disorders generally—are viewed. Full story »

Leave a comment