Fried_NaomiNaomi Fried, PhD, Chief Innovation Officer at Boston Children’s Hospital, will lead a panel on Innovation Acceleration at Taking on Tomorrow: Global Pediatric Innovation Summit + Awards (October 30-31, Seaport World Trade Center, Boston). Register now!

The word innovation gets thrown around a lot these days by people trying to set their products and ideas apart in the marketplace. But when everything is innovative, is anything really innovative? And if there really are innovative ideas, are they simply flashes of brilliance that can’t be planned for or predicted?

The answer to this last question is “no,” as I see every day at Boston Children’s Hospital, where I lead the Innovation Acceleration Program. The real trick is creating an innovation culture that supports great ideas—but that also supports the not-so-great ideas that teach us almost as much.

So what are the attributes of an innovation culture? Full story »

Leave a comment

Small innovations can transform health care

Fixing a real problem, even a small one, can transform health care.

What can innovators do to work with investors and industry to move an idea toward commercialization? Speakers at the upcoming Global Pediatric Innovation Summit + Awards, hosted by Boston Children’s Hospital, have some simple advice: Don’t think your innovation has to be sexy.

Health care is plagued by problems that aren’t necessarily sexy or compelling, says Mandira Singh, MBA, of AthenaHealth, who will speak at the Summit’s Mobile & Digital Health panel. More than many other industries, it still depends on outdated technology: for example, it’s the only industry that continues to rely on fax machines. “These are small problems that need to be fixed,” Singh said recently at a Boston Children’s Hospital forum.

Instead of focusing on everyday challenges, innovators often think far out into the future—to where they think health care will be in 10 years. That can be a trap: Full story »

Leave a comment

Listeria intracellular bacteria infection T-cell immunity granzymes granulysins

Listeria bacteria on a plate. The biology of HIV/AIDS suggests T-cells have a hitherto unrecognized way of killing pathogens like these.

The immune system, despite its immense complexity, really has only a few ways to kill bacteria:

  • Neutrophils and macrophages can capture and digest extracellular bacteria (ones that live free in tissues and the bloodstream).
  • Peptides (protein fragments) can punch holes in bacterial membranes or cross the membranes to disrupt bacterial processes.
  • T-cells can kill cells infected by intracellular bacteria (ones that take up residence within cells).

It’s this last mechanism that I want you to pay attention to. The conventional wisdom has long held that T-cells can only kill intracellular bacteria indirectly by eliminating the cells they’ve infected. But a paper by Judy Lieberman, MD, PhD, of Boston Children’s Hospital’s Program in Cellular and Molecular Medicine, reveals that T-cells have a hitherto unnoticed way of directly killing intracellular bacteria And she only found it because of HIV/AIDS. Full story »

Leave a comment

genome editing CRISPR Cas9Technology sometimes unfolds at a slow, measured pace and sometimes at lightning speed. Right now, we are witnessing what is arguably one of the fastest moving fields in biomedical science: a form of genome editing aptly known as CRISPR.

CRISPR allows researchers to make very precise—some would say crisp—changes to the genomes of human cells and those of other organisms. You might think of it as a kind of guided missile. Its precision is opening the doors to a wide variety of research and, hopefully, medical applications. Indeed, the possibilities seem to be bound only by scientists’ imaginations.

“For a long time, we have been accumulating new knowledge about which gene mutation causes which disease. But until very recently, we haven’t had the ability to go in and correct those mutations,” explains Feng Zhang, PhD, a core member of the Broad Institute of Harvard and MIT, and one of the method’s pioneers. “CRISPR is one of the tools that is starting to allow us to directly go in and do surgery on the genome and replace the mutations.”

CRISPR stands for Clustered Regularly Interspaced Short Palindromic Repeats. While this name is a bit verbose, it points to the technology’s origins: a set of genetic sequences first discovered in bacteria. Full story »

Leave a comment

Extinguishing innovation

The bigger the idea, the greater the risk of failure.

Bruce Zetter, PhD, is the Charles Nowiszewski Professor of Cancer Biology at Boston Children’s Hospital and Harvard Medical School and a member of Boston Children’s Vascular Biology program. He has made significant contributions to cancer research and worked as Chief Scientific Officer at Boston Children’s Hospital.  A frequent advisor to biotechnology and pharmaceutical companies, Zetter will be master of ceremonies at Boston Children’s Hospital’s Global Pediatric Innovation Summit + Awards (Oct 30-31, 2014).

By now, we have all seen a surfeit of articles on how to foster a culture of innovation in the workplace. Unfortunately, with our words, actions and tone of voice, most of us do just the opposite; we stifle innovation at every turn.

For the record, I run a cancer research lab at Boston Children’s Hospital, and innovation is our stock-in-trade, the one quality on which our performance as scientists is measured. There are no silver medals for coming in second in science. Yet even professional innovators can stifle the creative urge in their colleagues, their direct reports and even in their supervisors.

It’s easy to thwart a culture of innovation. Here are a few ways it can be done: Full story »

Leave a comment

Academic and industry partners are explicitly working to fill pharma pipelines.

Academic and industry partners are explicitly working to fill pharma pipelines.

Academic researchers and physician innovators are great at making research discoveries and developing inventions at an early stage. But if you were to fund them to turn their research findings into a product, would they have the expertise and experience needed to be successful? Most would not.

The investment community talks about the innovation funding gap, a.k.a. the “valley of death.” But there is also a knowledge gap on the part of academic researchers when it comes to transforming their technologies into therapeutics. Most want their findings to lead to new treatments for patients, but they lack the experience and expertise that companies have to advance early-stage research to a clinical stage. That includes expertise in designing pre-clinical experiments and navigating regulatory pathways for commercial development.

Academics often enter agreements with pharmaceutical companies, many of which are early-stage research grants. Often, these industry-sponsored research projects end with a scientific publication and are unsuccessful in generating new therapeutics—a subpar outcome for the company investor. Full story »

Leave a comment

Yelp iPhone Android social media foodborne illness food poisoning John Brownstein public health digital epidemiologyYou just had a great meal at a restaurant. So you grab your phone and fire off a glowing review on Yelp.

Consider the opposite scenario: You just had a horrible meal at a restaurant. So you grab your phone and fire off a scathing review on Yelp.

Now here’s one more: You had a great meal at a restaurant but woke up vomiting the next morning. Do you grab your phone and fire off a complaint on Yelp that your dinner made you sick?

That’s what a trio from Boston Children’s Hospital’s Informatics Program, are banking on.

A report in Preventive Medicine, authored by John Brownstein, PhD, Elaine Nsoesie, PhD and Sheryl Kluberg, MSc, judges Yelp’s usefulness as a food poisoning surveillance tool. Their efforts are part of a growing trend among public health researchers of trying to supplement traditional foodborne illness reporting with what we, the people, say on social media.

Full story »

Leave a comment

dialysis nephrotic syndrome

Understanding the genetic causes of nephrotic syndrome could lead to better drug treatments that reduce the need for dialysis or a kidney transplant. (Image: Wikimedia Commons)

Nephrotic syndrome is one of the worst diseases a child can have. It strikes the filtering units of the kidney, structures known as glomeruli. There’s no good treatment: Steroids are the main therapy used, but 20 percent of cases are steroid-resistant. In the syndrome’s most severe form, focal segmental glomerulosclerosis (FSGS), children are forced onto chronic dialysis and often require a kidney transplant—often only to have their disease recur in the new organ.

Until recently, no one knew what caused nephrotic syndrome; the first causative gene was identified just a dozen years ago. The lab of Friedhelm Hildebrandt, MD, PhD, at Boston Children’s Hospital is one of a handful that’s been chipping away at the others.

Hildebrandt receives, on average, one blood sample a day from patients all over the world. Full story »

Leave a comment

My father had a favorite bit of advice as we embarked on our adult lives: “Go big or go home.” Going big is exactly what OPENPediatrics is doing, empowering physicians and nurses to care for children across the globe.

The Web-based digital learning platform was conceived 10 years ago by Jeffrey Burns, MD, MPH, chief of critical care at Boston Children’s Hospital, and Traci Wolbrink, MD, MPH, an associate in critical care. It concluded a year-long beta test in April 2014, and version 1 has now been launched.

Developed to impart critical care skills, OPENPediatrics uses lectures, simulators and protocols to deliver training. In the process, it has helped save lives. Full story »

Leave a comment

With initial help from her mother, Kailee West, 6, quickly masters the basics of Puddingstone Place, an interactive virtual environment that helps children with autism develop language skills.

With initial help from her mother, Kailee West, 6, quickly masters the basics of Puddingstone Place, an interactive virtual environment that helps children with autism develop language skills.

In the 1990s, Facilitated Communication (FC), in which assistants “facilitate” the typing of thoughts by minimally verbal children by supporting their hands, began raising hopes in the autism community. The unproven procedure caught fire, and Syracuse University established a nationally recognized Facilitated Communication Institute.

Upon closer examination, though, doubts emerged. The messages were surprisingly sophisticated and written by children who often were not even looking at the keyboard. Critics charged that the words were actually those of the facilitator rather than the patient. Studies and organizations began discrediting FC. Full story »

Leave a comment