What we’ve been reading: Week of March 2, 2015

What Vector has been readingVector’s picks of recent pediatric healthcare, science and innovation news.

23andMe and the Promise of Anonymous Genetic Testing (New York Times)
Four debators weigh in on direct-to-consumer genetic testing, asking: Is it good for consumers? Is it good for science? And what about privacy? Worth a read.

Internet of DNA (MIT Technology Review)
Emerging projects in Toronta, Santa Cruz and elsewhere are working toward being able compare DNA from sick people around the world via the Internet to identify hard-to-spot causes of disease—analogous to using the “Compare documents” function in Word.

Engineering the perfect baby (MIT Technology Review)
Since the birth of genetic engineering, people have worried about designer babies. Now, with gene editing and CRISPR, they might really be possible. Bioethicists and scientists weigh in on what “germ line engineering” would mean.

Read Full Story | Leave a Comment

Web offerings talk up the promise of genetic testing, but skip the limitations

Using a computer personalized cancer medicine direct to consumer genetic testing

We all remember how the genetic testing firm 23andMe roused the FDA’s ire in 2013, earning itself a warning letter to stop marketing its direct-to-consumer Personal Genome Service. The kerfuffle, though partially resolved, remains at the center of an ongoing debate in diagnostic and regulatory circles over laboratory-developed tests (LDTs) offered directly to the public, and the agency’s role in regulating those tests.

But like nature, business abhors a vacuum, and longs to fill it. Many companies and institutions have already jumped into the LDT ring, offering up genomic or pharmacologic services that they say would help guide patients’ and doctors’ treatment decisions and improve outcomes. Especially for patients with cancer.

How solid is the science behind these claims? And do vendors do a good job disclosing the strengths and weaknesses of personalized medicine? Those questions form the core of a study published this week in the Journal of the National Cancer Institute.

Read Full Story | Leave a Comment

Of bugs, genes, development and intestinal biology

genes intestinal developmentThe collection of bacteria and other microorganisms living in our intestines—our microbiota—is now understood to play an important role in our physiology. Recent research indicates that it helps regulate our metabolism, immune system and other biological processes, and that imbalances in the microbiota are associated with everything from inflammatory bowel disease to diabetes.

Seth Rakoff-Nahoum, MD, PhD, wants to take this understanding to a new level. An infectious disease clinical fellow at Boston Children’s Hospital, he has systematically probed how genetics interact with environment—including the microbiota—to shape intestinal biology during different stages of development.

His investigations provide interesting clues to disorders that have their origins early in life, ranging from necrotizing enterocolitis in newborns to Hirschsprung’s disease (marked by poor intestinal motility) to food allergies.

Read Full Story | Leave a Comment

Meet the researcher behind “heart on a chip”

Pu and wife and waterfallFrom a series on researchers and innovators at Boston Children’s Hospital.

With all of the recent buzz about precision medicine, it’s no wonder that William Pu, MD is gaining recognition for his innovative application of stem cell science and gene therapy to study Barth syndrome, a type of heart disease that severely weakens heart muscle. Pu’s research was recently recognized by the American Heart Association as one of the top ten cardiovascular disease research advances of 2014.

Can you describe your work and its potential impact on patient care?

We modeled a form of heart-muscle disease in a dish. To do this, we converted skin cells from patients with a genetic heart muscle disease into stem cells, which we then instructed to turned into cardiomyocytes (heart-muscle cells) that have the genetic defect. We then worked closely with bioengineers to fashion the cells into contracting tissues, a “heart-on-a-chip.”

How was the idea that sparked this innovation born?

This innovation combined the fantastic, ground-breaking advances from many other scientists. It is always best to stand on the shoulders of giants.

Read Full Story | Leave a Comment

The changing nature of what it means to be “diagnosed”

one_red_apple_among_green_rare_disease_shutterstock_254533486

One of a series of posts honoring #RareDiseaseDay (Feb 28, 2015).

Historically, the starting point for making a rare disease diagnosis is the patient’s clinical profile: the set of symptoms and features that together define Diamond Blackfan anemia (DBA), Niemann-Pick disease or any of a thousand other conditions.

For example, anemia and problems absorbing nutrients are features of Pearson marrow pancreas syndrome (PS), whereas oddly shaped fingernails, lacy patterns on the skin and a proneness to cancer point to dyskeratosis congenita (DC).

The resulting diagnoses give the child and family an entry point into a disease community, and is their anchor for understanding what’s happening to them and others: “Yes, my child has that and here’s how it affects her. Does it affect your child this way too?”

But as researchers probe the relationships between genes and their outward expression—between genotype and phenotype—some families are losing that anchor. They may discover that their child doesn’t actually have condition A; rather, genetically they actually have condition B. Or it may be that no diagnosis matches their genetic findings.

What does that mean for patients’ care, and for their sense of who they are? 

Read Full Story | Leave a Comment

Epilepsy surgery: When it’s not good to wait

epilepsy surgery life expectancyAbout a third of children with epilepsy do not get better with drug treatment. Many physicians are inclined to try additional drugs to control the seizures—and there are many to choose from. However, analysis of data from tens of thousands of patients suggests that if two or more well-chosen drugs have failed, and surgery is a safe option, there’s no benefit in holding off.

The decision analysis, published in the February issue of Epilepsia, found that average life expectancy was more than five years greater when eligible children had surgery rather than prolonged drug treatment. And children spent more of their lives seizure-free.

Although clinical guidelines currently do call for earlier surgery, physicians tend to use it as a last resort—even when brain-mapping studies indicate that it’s unlikely to endanger vital brain structures.

Read Full Story | Leave a Comment

Can rare disease genes be protective?

Carriers of the rare disease Niemann-Pick C1 may be protected against Ebola.
Carriers of the rare disease Niemann-Pick C1 may be protected against Ebola.
First of several posts to commemorate (Feb 28, 2015).

Evolution is a strange thing: sometimes it favors keeping a mutation in the gene pool, even when a double dose of it is harmful—even fatal. Why? Because a single copy of that mutation is protective in certain situations.

A classic example is the sickle-cell mutation: People carrying a single copy don’t develop sickle cell disease, but they make enough sickled red blood cells to keep the malaria parasite from getting a toe-hold. (Certain other genetic disorders affecting red blood cells have a similar effect.)

Or consider cystic fibrosis. Carriers of mutations in the CFTR gene—some 1 in 25 people of European ancestry—appear to be protected from typhoid fever, cholera and possibly tuberculosis.

Read Full Story | Leave a Comment

What we’ve been reading: Week of February 16, 2015

Vector’s picks of recent pediatric healthcare, science and innovation news.

Hand of a Superhero: 3-D Printing Prosthetic Hands That Are Anything but Ordinary (The New York Times)
3D printers, it turns out, are an ideal solution for children who are missing fingers or hands. Prosthetics are rarely made for children; they tend to be too expensive, and children outgrow them far too quickly. Enter the 3D printer, which can create a D.I.Y. hand for as little as $20 to $50.

A Pancreas in a Capsule (MIT Technology Review)
Can stem cells solve the Type 1 diabetes puzzle? A handful of United States patients have had lab-grown pancreas cells, derived from human embryonic stem cells, transplanted in a human safety trial. Tech Review documents the challenges, and potential, of turning stem cells into real, functioning pancreas cells.

Read Full Story | Leave a Comment

Measles in America: Why vaccination matters

Maimuna (Maia) Majumder is an engineering systems PhD student at MIT and computational epidemiology research fellow at HealthMap.

The 2015 Disneyland measles outbreak in the United States, which started in late December and spread to more than 100 people in just 6 weeks, has recently become the subject of substantial media scrutiny.

Measles is extremely infectious, exhibiting a basic reproductive number between 12 and 18—one of the highest recorded in history. This means that for every 1 case who gets sick in a totally susceptible population, 12 to 18 other folks get sick, too. Thankfully, when uptake of the measles vaccine is high enough in a given community, it’s almost impossible for the disease to spread—thus halting a potential outbreak in its tracks.

But what happens when vaccine rates aren’t high enough?

Read Full Story | Leave a Comment

When HIV and TB coexist: Digging into the roots of IRIS

HIV (green dots) budding from a white blood cell. (CDC)
HIV (green dots) budding from a white blood cell. (CDC)

Millions of people worldwide suffer from co-infection with tuberculosis (TB) and HIV. While prompt antibiotic and antiretroviral treatment can be a recipe for survival, over the years, physicians have noticed something: two or three weeks after starting antiretrovirals, about 30 percent of co-infected patients get worse.

The reason: immune reconstitution inflammatory syndrome, or IRIS. Doctors think it represents a kind of immune rebound. As the antiretrovirals start to work, and the patient’s immune system begins to recover from HIV, it notices TB’s presence and overreacts.

“It’s as though the immune system was blanketed and then unleashed,” says Luke Jasenosky, PhD, a postdoctoral fellow with Anne Goldfeld, MD, of Boston Children’s Hospital’s Program in Cellular and Molecular Medicine. “It then says, ‘I can start to see things again, and there are a lot of bacteria in here.'”

Though potentially severe, even fatal, IRIS may actually be a good sign: there is evidence that patients who develop it tend to fare better in the long run. But why does it arise only in some patients?

Read Full Story | Leave a Comment