This array of sensors surrounding a baby's head will give researchers and eventually clinicians a high-resolution image of neural activity.
Imagine you’re a clinician or researcher and you want to find the source of a newborn’s seizures. Imagine being able to record, in real time, the neural activity in his brain and to overlay that information directly onto an MRI scan of his brain. When an abnormal electrical discharge triggered a seizure, you’d be able to see exactly where in the brain it originated.
For years, that kind of thinking has been the domain of dreams. Little is known about infant brains, largely because sophisticated neuroimaging technology simply hasn’t been designed with infants in mind. Boston Children’s Hospital’s Ellen Grant, MD, and Yoshio Okada, PhD, are debuting a new magnetoencephalography (MEG) system designed to turn those dreams into reality. Full story »
What are the pain points in pediatrics? There are at least 37: the number of clinicians, parents and others who lined up at the podium last weekend to pitch problems they hoped to solve at the second annual Hacking Pediatrics.
The hackathon, produced by Boston Children’s Hospital in collaboration with MIT Hacking Medicine, brought out many common themes: Helping kids with chronic illnesses track their symptoms, take their meds and avoid lots of clinic visits. Helping parents coordinate their children’s care and locate resources. Helping pediatric clinicians make better decisions with the right information at the right time.
Hackathons have a simple formula: Pitch. Mix. Hack. Get Feedback. Iterate. Repeat—as many times as possible. Full story »
Start your engines: A fleet of GoBabyGo cars, customized by therapists and parents to give disabled children mobility and help strengthen weak muscles. (Courtesy Cole Galloway)
TEDMED2014 focused on a powerful theme: unlocking imagination in service of health and medicine. Speaker after speaker shared tales of imagination, inspiration and innovation. Here are a few of our favorites:
$100 plastic car stands in for $25,000 power wheelchair
In the first (and likely only) National Institutes of Health-funded shopping spree at Toys R’ Us, Cole Galloway, director of the Pediatric Mobility Lab at the University of Delaware, and crew stocked up on pint-sized riding toys.
Galloway’s quest was to facilitate independence and mobility among disabled children from the age of six months and older and offer a low-tech solution during the five-year wait in the United States for a $25,000 power pediatric wheelchair.
The hackers jerry-rigged the toys with pool noodles, PVC pipe and switches, reconfiguring them as mobile rehabilitation devices to promote functional skills among kids with special needs. Full story »
My father had a favorite bit of advice as we embarked on our adult lives: “Go big or go home.” Going big is exactly what OPENPediatrics is doing, empowering physicians and nurses to care for children across the globe.
The Web-based digital learning platform was conceived 10 years ago by Jeffrey Burns, MD, MPH, chief of critical care at Boston Children’s Hospital, and Traci Wolbrink, MD, MPH, an associate in critical care. It concluded a year-long beta test in April 2014, and version 1 has now been launched.
Developed to impart critical care skills, OPENPediatrics uses lectures, simulators and protocols to deliver training. In the process, it has helped save lives. Full story »
With initial help from her mother, Kailee West, 6, quickly masters the basics of Puddingstone Place, an interactive virtual environment that helps children with autism develop language skills.
In the 1990s, Facilitated Communication (FC), in which assistants “facilitate” the typing of thoughts by minimally verbal children by supporting their hands, began raising hopes in the autism community. The unproven procedure caught fire, and Syracuse University established a nationally recognized Facilitated Communication Institute.
Upon closer examination, though, doubts emerged. The messages were surprisingly sophisticated and written by children who often were not even looking at the keyboard. Critics charged that the words were actually those of the facilitator rather than the patient. Studies and organizations began discrediting FC. Full story »
Daniel Busso, MSc, is a doctoral student at the Harvard Graduate School of Education and a researcher in the Sheridan Laboratory at Boston Children’s Hospital.
More than 60 percent of teenagers have experienced a traumatic event in their lifetime, but only a minority will develop post-traumatic stress disorder (PTSD). For both researchers and clinicians, this raises an important question: Why are some youth at greater risk for mental health problems after trauma? As our lab reports in two recent studies, conducted after the 2013 Boston Marathon bombings, the answer may lie in our neurobiology.
PTSD, which includes intrusive memories, increased anxiety and difficulty concentrating or sleeping, has been linked to a variety of psychosocial and biological risk factors, such as prior experiences of trauma or a history of mental health problems. Other studies suggest that disruptions to the body’s stress response system, or in patterns of brain activity when responding to threat, may predispose people to the disorder.
However, a common problem in this research is that biological and mental health data are collected only once, usually long after the traumatic event itself, Full story »
Emmie Mendes was lucky enough to be diagnosed before age 3, but many families face a much longer journey.
At first, Corrie and Adam Mendes thought their daughter Emmie had an inner ear problem. She was late with several early milestones, including walking, and when she did walk, she often lost her balance. The family pediatrician sent them to a neurologist, who ordered a brain MRI and diagnosed her with pachygyria, a rare condition in which the brain is smoother than normal, lacking its usual number of folds.
Additionally, Emmie’s ventricles, the fluid-filled cushions around the brain, looked enlarged, so the neurologist recommended brain surgery to install a shunt to drain off fluid. He advised Corrie and Adam that Emmie’s life expectancy would be greatly reduced.
As Corrie recounts on her blog, Emmie’s Story, she went online and came across the research laboratory of Christopher Walsh, MD, PhD, at Boston Children’s Hospital. The lab does research on brain malformations and has an affiliated Brain Development and Genetics Clinic that can provide medical care.
After Walsh’s team reviewed Emmie’s MRI scan, genetic counselor Brenda Barry invited the family up from Florida. Full story »
In it, the pair reports that the FDA approved 20 attention deficit hyperactivity disorder (ADHD) drugs over the last 60 years without what would be considered sufficient long-term safety and rare adverse event data.
Their findings, they say, point to larger issues in how the FDA’s approval process addresses the long-term safety of drugs intended for chronic use in children. Full story »
A randomized trial will soon test whether web-based updates from parents and teachers improve outcomes in ADHD, autism and more.
Eugenia Chan, MD, MPH, is a developmental-behavioral pediatrician and health services researcher in the Division of Developmental Medicine at Boston Children’s Hospital. She runs the Developmental Medicine Center’s ADHD Program and is co-developer of ICISS Health, a web-based disease monitoring and management system.
When I set out with my collaborator Eric Fleegler, MD, MPH, to build a web-based tracking system for children with attention deficit hyperactivity disorder (ADHD), we focused on a single problem—getting parents and teachers to fill out symptom questionnaires in time to help doctors make informed clinical decisions at follow-up visits. We had no inkling of the possibilities that this kind of software platform could hold, or how it might grow in the future. Full story »
Prenatal cell therapy could avoid the need for invasive surgery to repair myelomeningocele.
The neural tube, which becomes the spinal cord and brain, is supposed to close during the first month of prenatal development. In children with spina bifida, it doesn’t close completely, leaving the nerves of the spinal cord exposed and subject to damage. The most common and serious form of spina bifida, myelomeningocele, sets a child up for lifelong disability, causing complications such as hydrocephalus, leg paralysis, and loss of bladder and bowel control.
New research from Boston Children’s Hospital, though still in animal models, suggests that standard amniocentesis, followed by one or more injections of cells into the womb, could be enough to at least partially repair spina bifida prenatally.
Currently, the standard procedure is to operate on infants soon after delivery. Full story »