Stories about: heart surgery

A portal for beating-heart surgery

Portal for beating heart surgery-analagous to mine entrance

When a patient needs a cardiac intervention, surgeons can choose to access the heart in one of two ways: open-heart surgery or a cardiac catheterization.

Open-heart surgery offers clear and direct access to the heart, but it also requires stopping the heart, draining the blood, and putting the patient on an external heart and lung machine. Catheterization—insertion of a thin, flexible tube through the patient’s groin and up into the still-beating heart—is less invasive. But it’s not suitable for very complicated situations, because it is hard to manipulate the heart tissue with catheter-based tools from such a far distance.

Both methods have been highly optimized, but each has its own risks, benefits and drawbacks. Wouldn’t it be nice if there were a way to directly access the heart and maintain normal heart function and blood flow while repairs are performed?

Nikolay Vasilyev, MD, thought so. A scientist in the cardiac surgery research lab at Boston Children’s Hospital, led by Pedro del Nido, MD, Vasilyev has designed a platform technology that may revolutionize the way we conduct cardiac interventions.

Read Full Story | 1 Comment | Leave a Comment

Defying orders to make heart surgery history

Lorraine Sweeney in 1963, on the 25th anniversary of her historic heart operation. (Children's Hospital Boston Archives)

When the first fetal cardiac surgery was performed at Children’s Hospital Boston in 2001 – entering Jack Miller’s heart through his mother’s abdomen and opening blood flow – the world was stunned. But more than 60 years earlier, another operation was equally game-changing.

It was 1938, a time before heart-lung bypass, when ether and chloroform were only starting to be supplanted by more controllable anesthetics, when tinkering with the heart or even opening the chest were seen as dangerous and taboo.

Tinkering was what Robert E. Gross, chief surgical resident at The Children’s Hospital, liked to do. He was interested in a congenital heart condition known as patent ductus arteriosus, a passageway between the pulmonary artery and the aorta that’s supposed to close after birth — but doesn’t.

Read Full Story | 3 Comments | Leave a Comment

Newly approved Berlin Heart helps patients waiting for a transplant

On the Berlin Heart, Alina Siman, 4, has regained her energy which will make her a better transplant candidate when a new organ becomes available

Four-year-old Alina Siman is being kept alive on a device that gained approval in the U.S. just two weeks ago. The Berlin Heart Group’s EXCOR, a ventricular assist device manufactured in Berlin, Germany, takes over the normal function of a heart by pumping blood directly to the pulmonary artery and into the lungs.

With FDA approval granted on December 16, the U.S. joins Europe and Canada in offering the device for children of all ages with end stage heart failure.

Read Full Story | 2 Comments | Leave a Comment

It’s just a hat: Simplicity in innovation

Clinical innovations don't have to be complex. Sometimes, as nurse Karen Sakakeeny has found, an innovation can be as simple as a hat (shown here on a doll). (Courtesy Karen Sakakeeny)

When we think about innovation, especially in health care, our thoughts often turn to the highly complex: new surgical procedures, new drugs, new devices or machines, etc.

But innovation in medicine and patient care doesn’t have to be complex. Sometimes it can be very simple. Like a hat.

Karen Sakakeeny has been a clinical nurse for more than 30 years, spending much of that time in the operating room. While doing a stint in cardiac surgery, she found herself thinking about ways to improve the rewarming process for infants undergoing open heart surgery.

Read Full Story | Leave a Comment

Guiding devices to market, and mending broken hearts

A biodegradable patch for repairing ventral septal defects (VSDs).

Imagine: You’re a pediatric cardiologist who for years has worked on the design of a device that could revolutionize the treatment of a severe atrial arrhythmia. But while you can find a lot of assistance and advice for bringing devices for adults to market, you find little help for devices intended for infants and children. What can you do?

The U.S. Food and Drug Administration could be your best friend. Better known for its role in establishing and enforcing regulations for drug and device safety and information, the FDA is also an advocate, helping bring innovative devices for pediatric treatment into clinical practice. Pedro del Nido, chief of cardiac surgery at Children’s Hospital Boston, outlined the FDA’s advocacy role last week at the monthly Innovators’ Forum hosted by the Children’s Innovation Acceleration Program.

Read Full Story | Leave a Comment

Beating-heart surgery and the search for a killer app

Concept for a new kind of surgical robot (click to enlarge)

Inventors and engineers tend to come up with ideas and technologies first, then say, “This is cool, what’s it good for?” Clinicians tend to say, “Here’s my clinical problem, how can I solve it?”

This was roughly the thinking that brought together Boston University engineer Pierre Dupont and Pedro del Nido, chief of Cardiac Surgery at Children’s Hospital Boston.

Dupont had a vision for a next-generation surgical robot. del Nido had a vision of doing complex cardiac repairs in children while their hearts are still beating. Could they create a viable technology?

Read Full Story | 3 Comments | Leave a Comment

TEDMED here we come

Move over, Ozzy Ozbourne. Next Wednesday, October 27th, Children’s neurologist-neuroscientist and TEDMED speaker Frances Jensen will compare and contrast the developing infant brain with the highly paradoxical teen brain – which is also developing rapidly, all the way to age 25 or so. Infant and teen brains are at opposite ends of the developmental spectrum — almost different species, Jensen says – but they’re both extremely dynamic and exquisitely sensitive to environmental factors (drugs and alcohol in teens and brain injury and seizures in infants).

Read Full Story | Leave a Comment