Posts tagged as:

diabetes

The footpads of diabetic mice (line-D) treated with a cream containing XIB4035 have increased numbers of nerve terminals (shown in green in the lower right panel), whereas mice given a control cream (lower left) do not. The top two panels represent healthy “wild type” mice.

The footpads of diabetic mice given a cream containing XIB4035 (lower right) have new nerve terminals (shown in green), whereas mice given a control cream (lower left) do not. The top two panels represent healthy “wild type” mice.

About half of people with diabetes develop peripheral neuropathy. The most common form, small-fiber neuropathy, generally starts in the feet, causing pain, odd sensations like pricks and “pins and needles,” and—the most worrisome feature—a loss of sensation that can increase the chance of ulcers and infections.

In some cases, that may lead to the need for amputation—as happened with my diabetic great-grandfather whose numbed feet, unbeknownst to him, got too close to the fire.

While there are some treatments to reduce pain, there’s nothing that restores sensation. Nor do any existing treatments address the underlying cause of the neuropathy: the degeneration or dysfunction of the endings of the sensory neurons in the skin. Full story »

5 comments

Food insecurity is a major problem for diabetic patients at the Kay Mackensen clinic in Haiti where Julia Von Oettingen, MD (top center) serves as medical director.

Food insecurity is a major problem for diabetic patients at the Kay Mackensen clinic in Haiti where Julia Von Oettingen, MD (top center) serves as medical director.

In parts of the developing world, especially remote, rural areas, it’s not unusual for people with diabetes to ignore their symptoms until they’ve collapsed and need immediate care. By the time they see a doctor, their blood sugar levels might be so high as to cause diabetic ketoacidosis (DKA), where the body starts breaking down fats and proteins, turning their blood acidic and leaving them extremely dehydrated.

For many, it won’t be the first such episode. But for some, it can be the last.

Stories like this are increasingly common across large swaths of the developing world—as Diane Stafford, MD, an endocrinologist from Boston Children’s Hospital, discovered when she traveled to Kigali, Rwanda, through the Human Resources for Health program. Full story »

Leave a comment

Diagram of Roux-en-Y gastric bypass

Gastric bypass surgery creates a small pouch in the stomach and connects it directly to the small intestine. Why does it help type 2 diabetes? (Wikimedia Commons)

Research shows that gastric bypass surgery, aside from inducing weight loss, resolves type 2 diabetes. Though weight loss and improved diabetes often go hand-in-hand, patients who undergo gastric bypass usually end up seeing an improvement in their type 2 diabetes even before they lose weight.

But why? To investigate, a research team led by Nicholas Stylopoulos, MD, of Boston Children’s Hospital’s Division of Endocrinology, spent a year studying rats and observed that after gastric bypass surgery, the way in which the small intestine processes glucose changes. They saw the intestine using and disposing of glucose, and showed that it thereby regulates blood glucose levels in the rest of the body, helping to resolve type 2 diabetes.

Basically, as the team reported recently in Science, the small intestine—widely believed to be a passive organ—is actually a major contributor to the body’s metabolism. Full story »

Leave a comment

Could diabetes be treated without insulin shots? (Tess Watson/Flickr)

Could diabetes be treated without insulin shots? (Tess Watson/Flickr)

For decades, patients have managed their type 1 diabetes by injecting themselves with insulin to regulate the glucose in their blood. While this form of medical management addresses the immediate danger of low insulin levels, long-term complications associated with diabetes, like heart and kidney diseases, still threaten more than 215,000 children currently living with the disease in the United States.

“Insulin injections can manage hyperglycemia by reducing the patient’s glucose levels, but it is not the cure,” says Paolo Fiorina, MD, PhD, of the Nephrology Division at Boston Children’s Hospital.

Fiorina is currently involved in new research targeting a molecular pathway that triggers diabetes in the first place—potentially providing a permanent cure. It could potentially change the face of diabetes treatment in children. Full story »

12 comments

Sharing via social media is a great opportunity for collecting better public health data and encouraging healthy behavior changes. (bengrey/Flickr)

We humans are sharing creatures. We talk about ourselves, what we think, what we know. If we weren’t like this, cocktail parties would be really boring, and Facebook and Twitter wouldn’t exist.

Nor would health care. At the most basic level, health care relies on give-and-take between patients and doctors—patients sharing their symptoms and concerns with doctors, and doctors sharing their knowledge with patients.

The same holds true for public health. Prevention and control efforts require lots of patients and doctors to share information so that public health agencies know where to target their resources.

But the give-and-take in public health is often slow and cannot always detect conditions or complications at rates that reflect reality. And usually it’s one-way—from the patient or public to surveyors. Full story »

Leave a comment

Melinda Tang, MEng, is a software developer for the Innovation Acceleration Program at  Boston Children’s Hospital.

When children return home from the hospital after surgery, parents can be overwhelmed by the written information and instructions for follow-up. At the MIT Media Lab’s Health and Wellness Hackathon earlier this year, the focus was on empowering patients to take an active role in their health. As my colleague Brian Rosman described, our team from Boston Children’s Hospital attended and spent two weeks developing “Ralph,” a mobile application for managing post-operative care that incorporates an avatar and features of gaming to engage and motivate children to follow their regimen. I was one of the primary programmers for our group.

We won third place, working alongside five other talented teams. Here are some snapshots of what they were up to — helping patients manage asthma, diabetes, pain, cardiac rehab and more. Full story »

2 comments

Spherical nanoparticle (Fangting/Wikimedia Commons)

Recent research on Type 1 diabetes has begun focusing on prevention: Studies indicate that children start developing diabetes-related autoantibodies sometimes years before they develop clinical diabetes requiring insulin shots. The autoantibodies are an indicator of insulitis – a precursor condition in which the insulin-producing islets in the pancreas become inflamed and infiltrated with white blood cells.

In animal models, immune-suppressing drugs have been shown to blunt this attack by curbing the number of white blood cells circulating in the body. That reduces the need for insulin treatment – but at a high cost: Given systemically, the high doses needed to suppress the immune attack cause kidney toxicity, reduce the ability to fight infections, and decrease the body’s ability to respond to insulin.

That’s a tough sell for a child who doesn’t yet have symptoms of diabetes – but that’s where nanotechnology can help, say researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University and Children’s Hospital Boston. What if immunosuppressants could be delivered in far smaller doses, just to where they’re needed in the pancreas? Full story »

Leave a comment

Within days of injecting a cell mix into mice, numerous blood vessels form. Can these vessels be made to secrete drugs, without the need for IVs or injections?

People who rely on protein-based drugs often have to endure IV hookups or frequent injections, sometimes several times a week. And protein drugs – like Factor VIII and Factor IX for patients with hemophilia, alpha interferon for hepatitis C, interferon beta for multiple sclerosis — are very expensive.

What if they could be made by people’s own bodies?

Combining tissue engineering with gene therapy, researchers at Children’s Hospital Boston showed that it’s possible to get blood vessels, made from genetically engineered cells, to secrete drugs on demand directly into the bloodstream. They proved the concept recently in the journal Blood, reversing anemia in mice with engineered vessels secreting erythropoietin (EPO).

This technology could potentially deliver other protein drugs, Full story »

1 comment

George Daley and his lab may have found a new way to connect the dots between cancer and diabetes. (michelle.gray/Flickr)

Most of us think about cancer as a disease of genes gone awry – of mutations, deletions, duplications, etc. causing unchecked cell growth.

But could you also view cancer as a metabolic disorder, like type 2 diabetes? George Daley and his lab in the Stem Cell Transplantation Program at Children’s have found some intriguing molecular links that make this a plausible idea.

While it’s not yet clear what this means for patients with either disease, the findings help untangle some very perplexing data about human genetics and diabetes risk, and could change doctors’ thinking about the treatment of both conditions down the road.

Scientists have long known that cancerous and healthy cells don’t use sugar in the same ways. Full story »

Leave a comment

Boosting proteins normally triggered by inflammation may be a new treatment approach for Type 2 diabetes.

Low-grade inflammation caused by obesity is widely believed to contribute to insulin resistance and type 2 diabetes. But, as it turns out, inflammation activates two proteins that appear critical for maintaining good blood sugar levels. Reporting in Nature Medicine, endocrinology researcher Umut Ozcan demonstrates that activating either of these proteins artificially can normalize blood sugar in severely obese and diabetic mice.

That’s a completely new way of looking at diabetes, and suggests a very different way of treating it.

“This finding is completely contrary to the general dogma in the diabetes field,” says Ozcan. “For 20 years, inflammation has been seen as detrimental, whereas it is actually beneficial.” Full story »

1 comment