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The biotechnology and pharmaceutical indus-
tries are currently confronted with a conundrum: 
despite remarkable scientific breakthroughs 
over the past decade in our understanding of 
the molecular biology of disease, the financial 
returns to biopharma investments have been 
mediocre at best, and investors are withdrawing 
capital from this sector.1 Accordingly, there is a 
growing concern within and outside the indus-
try that the process of translating biomedical 
research into effective drugs is broken. Several 
explanations have been proposed for this state of 
affairs, but the most common is that the current 

1 For example, the annualized return of the New York 
Stock Exchange Arca Pharmaceutical Index (stock symbol 
“DRG”) during the period from January 2, 2002 to January 
4, 2012 is −1.2 percent, and despite the near doubling of 
the aggregate R&D budget of the pharmaceutical industry 
from $68 billion in 2002 to $127 billion in 2010, there has 
been little appreciable impact on the number of new drugs 
approved (Evaluate Pharma 2010). Life sciences venture-
capital investments have been equally disappointing, 
with an average internal rate of return of −1 percent over 
the ten-year period from 2001 through 2010 according to 
VentureXpert data. 

Can Financial Engineering Cure Cancer? †

By David E. Fagnan, Jose Maria Fernandez, Andrew W. Lo, and Roger M. Stein*

* Fagnan: MIT Operations Research Center and 
Laboratory for Financial Engineering, 100 Main Street, 
Cambridge, MA 02142 (e-mail: dfagnan@mit.edu); Fernan-
dez: MIT Laboratory for Financial Engineering, 100 Main 
Street, Cambridge, MA 02142 (e-mail: chema@sloan.mit.
edu); Lo: MIT Sloan School of Management, Laboratory 
for Financial Engineering, 100 Main Street, Cambridge, 
MA 02142, CSAIL/EECS, and AlphaSimplex Group 
(e-mail: alo@mit.edu); Stein: MIT Laboratory for Financial 
Engineering, 100 Main Street, Cambridge, MA 02142, and 
Moody’s Corporation (e-mail: steinr@mit.edu). We thank 
Markus Brunnermeier, Jayna Cummings, and participants 
at the 2013 AEA Annual Meetings session on “Speculation, 
Insurance and the Regulation of Financial Innovation” for 
helpful comments and discussion. The views and opin-
ions expressed in this article are those of the authors only 
and do not necessarily represent the views and opinions 
of AlphaSimplex, MIT, Moody’s, any of their affiliates or 
employees, or any of the individuals acknowledged above.

† To view additional materials, and author disclosure 
statement(s),visit the article page at 
http://dx.doi.org/10.1257/aer.103.3.406.

business model for translational research and 
development is flawed.2

In particular, Fernandez, Stein, and Lo  (2012) 
argue that drug development is becoming increas-
ingly expensive, lengthy, complex, and risky. 
Each of these characteristics makes investors 
less interested in investing, ceteris paribus, and 
in combination they can cause significant under-
funding for the entire industry. In particular, 
increasing complexity and risk imply that bio-
pharma’s traditional financing vehicles of private 
and public equity are becoming less effective 
funding sources because the needs and expecta-
tions of limited partners and shareholders are not 
consistent with the realities of biomedical innova-
tion. The quarterly earnings cycle, real-time pric-
ing, and dispersed ownership of public equities 
imply constant scrutiny of corporate performance 
from many different types of shareholders, all 
pushing senior management toward projects and 
strategies with clearer and more immediate pay-
offs, and away from more speculative but poten-
tially transformative research.

Private equity may offer more latitude for 
risk taking and deferred exits, but the scale of 
capital commitment is considerably smaller, the 
time horizon is still shorter than most clinical-
trial cycles, and funding decisions are driven 
less by scientific breakthroughs than by busi-
ness cycles and windows for conducting initial 
public-equity offerings.3 As a result, the riskiest 
segment of the drug-development process—the 
translational phase in between basic research 
and human clinical trials—is now known as 
the “valley of death” because of the dearth of 
 funding. For example, in 2010 only $6 billion 

2 See Pisano (2006). 
3 See Huggett (2012) and Papadopoulos (2011). In fact, 

Nanda and Rhodes-Kropf (2011) observe that even the mere 
concern about the availability of future rounds of financ-
ing—due solely to the possibility of unfavorable economic 
conditions—is often reason enough for venture capitalists to 
shun proven and economically viable technologies. 
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to $7 billion was spent on translational efforts, 
while $48 billion was spent on basic research, 
and $125 billion was spent on clinical develop-
ment that same year.4

In this paper, we describe a new approach to 
financing biomedical innovation that we first 
proposed in Fernandez, Stein, and Lo (2012) 
and extend in several ways here: using portfo-
lio theory and securitization to reduce the risk 
of translational medicine. By combining a large 
number of drug-development projects within a 
single portfolio, a “megafund,” it becomes pos-
sible to reduce the investment risk to such an 
extent that issuing bonds backed by these proj-
ects becomes feasible. Debt financing is a key 
innovation because the cost of each drug-devel-
opment project can be several hundred million 
dollars; hence, a sufficiently diversified port-
folio may require tens of billions of dollars of 
investment capital, and debt markets have much 
greater capacity than either private or public  
equity markets.5 If these bonds are structured to 
have different priorities, the most senior class or 
“tranche” may be rated by credit-rating agencies, 
opening up a much larger pool of institutional 
investors who can purchase such instruments, 
e.g., pension funds, sovereign wealth funds, 
endowments, and foundations.

In Section I we present a highly simplified 
analytical example of a megafund portfolio 
to provide intuition, in Section II we describe 
some simulation results of a hypothetical cancer 
megafund using historical data on anti-cancer 
compounds, and we conclude in Section III.

I. A Stylized Example

Consider a hypothetical drug-development 
program that requires $200 million in out-of-
pocket development costs (in present value), 
a ten-year development period during which 
no revenues are generated, and has a 5 percent 
chance of producing an approved drug at the 

4 See Milken Institute (2012). 
5 For example, in 2010, the size of the entire US venture 

capital industry was $176 billion, whereas the size of the US 
bond market was $35.2 trillion. In 2011, the total amount of 
all US initial public-equity offerings (excluding closed-end 
funds) was only $41 billion, whereas the amount of straight 
corporate debt issued was $1 trillion. See National Venture 
Capital Association (2011) and Securities Industry and 
Financial Markets Association (2012) for details. 

end of the ten years.6 Very few rational inves-
tors would be attracted by such an opportunity, 
even if a successful drug generates $2 billion in 
annual revenues over the subsequent ten-year 
period from years 11 to 20 (the typical amount 
of patent protection remaining at the time of 
approval). Using a cost of capital of 10 percent 
for these cash flows, the expected compound 
annual rate of return for this project is 11.9 per-
cent, but the return standard deviation is 423 
percent due to the extremely skewed distribution 
of success and failure.

Now consider a portfolio of 150 such proj-
ects and assume that they are independently and 
identically distributed (IID). Then the expected 
return of the portfolio remains 11.9 percent, 
but the return standard deviation becomes 
423/ √ 

_
 150    = 35 percent, yielding a much more 

attractive investment. Of course, this risk reduc-
tion is not easy to come by—it requires $30 bil-
lion of capital! However, the reduction in risk 
allows a significant portion of this capital to be 
debt rather than equity. In particular, because the 
probability of at least two successes in 150 IID 
trials is 99.6 percent, this megafund could issue 
up to 2 ×  $12.3 =  $24.6 billion of ten-year 
zero-coupon bonds at the outset with a default 
probability of 100 − 99.6 = 0.4 percent. As 
of February 2012, Moody’s reported the aver-
age yield of seasoned Aaa corporate bonds with 
approximately 30 years to maturity to be 3.85 
percent (Federal Reserve Board of Governors 
2012), which is a reasonable proxy for the yield 
of a ten-year bond with high credit quality. At a 
yield of 3.85 percent, a zero-coupon bond that 
promises to pay $24.6 billion in year 10 would 
generate proceeds of $16.8 billion when issued 
in year 0. If the remaining $13.2 billion were 
financed by equity, the expected rate of return 
and standard deviation would be 17.8 percent 
and 78.9 percent, respectively.7 Of course, these 
values depend critically on the assumption that 
the 150 projects are independent; if they are pos-
itively correlated, the amount of risk reduction 
will be lower. Alternatively, to achieve the same 

6 This example was first proposed by Fernandez, Stein, 
and Lo (2012), and we extend it here to allow for correlated 
transitions. 

7 These values are higher than those of the all-equity-
financed case (11.9 percent and 34.6 percent) because of 
leverage, but are still within the range of risk/reward profiles 
of publicly traded equities. 
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level of risk reduction with positively correlated 
projects, more projects are needed, implying a 
larger amount of capital. For example, to attain 
the same probability of at least two successes 
in the IID case with projects that have pairwise 
correlation of 10 percent,8 600 projects would 
be required, implying a $120 billion megafund.

Because debt markets are significantly larger 
and have a much broader spectrum of investors 
than do private or public equity markets, the issu-
ance of debt dramatically increases the potential 
funding sources for the megafund. Using secu-
ritization techniques, credit derivatives, and 
third-party guarantees can further increase the 
megafund’s investor base. Guarantees are espe-
cially effective, not only because of their impact 
on credit ratings, but also because of their effi-
cient use of capital. For example, for the case 
of 150 IID projects with a 5 percent success 
rate per project, the expected cost of a guaran-
tee to protect the full amount of a $24.6 billion 
debt issue is (1 − 0.9995)  × 24.6 + 0.0036 × 
 12.3 = $56.6 million; hence, the present value 
of this expected cost at a 2 percent cost of capital 
is $46.4 million, approximately 19 basis points 
of the amount guaranteed.

II. Simulating a Cancer Megafund

Cancer research offers a concrete illustration 
of the potential benefits of megafund financ-
ing. As the leading cause of death in the United 
States as of 2011, cancer is an urgent social 
priority that has an estimated economic impact 
of 1.5 percent of gross domestic product. The 
unconditional baseline probability of success-
fully developing an anti-cancer therapy is very 
low (6.7 percent in oncology versus 12.1 percent 
in all other therapies as of 2011)9; the required 
investment horizon is relatively long (the 
approval process can take more than a decade); 
and conditional on approval, the expected return 
is high (revenues can be on the order of billions 
of dollars per year for the remaining life of a 
patent). Fernandez, Stein, and Lo (2012) have 
generalized the stylized analysis of Section I to a 
more realistic multistate, multiperiod framework 
which includes path-dependence and correlated 

8 These calculations make use of the Vasicek (1987) lim-
iting loss distribution; see Fagnan et al. (2013) for details. 

9 Thomas (2012). 

asset valuations. In this article we provide an 
important extension to that framework: an anal-
ysis of the impact of guarantees on returns to 
bond and equity holders.

The need to extend the single-period model 
of Section I arises from the drug-approval pro-
cess. At each stage of this process, larger cash 
inflows are required to fund additional testing.10 
Importantly, new investment at each stage can 
occur only when there is sufficient capital avail-
able that is not required for other uses such as 
debt service or repayment.

The dominant source of cash flow for the 
megafund derives from the sale of compounds 
out of the portfolio. Profits or losses accrue 
when the megafund purchases a compound in 
one phase and subsequently sells it at another 
phase. Analysis of the portfolio primarily 
involves the specification of four quantities: the 
transition probabilities, the distribution of trial 
costs in each phase, the distribution of valua-
tions for each compound that is sold in a specific 
phase, and some form of dependence among the 
compound valuations.11

As in Fernandez, Stein, and Lo (2012), we 
consider two “cashflow” securitizations in which 
portfolios of ownership interests in experimental 
drug compounds are acquired using capital from 
the issuance of structured securities (research 
backed obligations or RBOs). The capital pools 
range in size from $3 billion to $15 billion. 
Because of the complexities of the waterfall and 
the drug approval process, numerical simula-
tions are used to evaluate the RBO securities.12 
Fernandez, Stein, and Lo (2012) conduct two 
sets of simulations, one representing the early 
stages (preclinical to Phase II) and the other 

10 See Fernandez, Stein, and Lo (2012) for a more 
detailed discussion of the various stages of FDA approval. 

11 Fernandez, Stein, and Lo (2012) use historical data on 
over 2,000 anti-cancer compounds (reduced to 733 after data 
cleaning)—provided by Deloitte Recap LLC and the Center 
for the Study of Drug Development at Tufts University 
School of Medicine—to estimate a transition matrix, , 
describing the probability space for each compound in the 
portfolio. The transition probabilities for the PRE state were 
taken from Paul et al. (2010), and this study was also used to 
calibrate the parameters of the cost distributions. Estimation 
of the parameters for the valuation function and valuation 
correlations was done using data from Bloomberg and other 
sources. See Fagnan et al. (2013) for details of the models 
and calibration of the parameters. 

12 Pseudo-code for these simulations is given in Fagnan 
et al. (2013). 
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representing the later stages (Phase II to New 
Drug Approval) of drug development. In this 
paper, we focus only on the early-stage simula-
tion—Simulation A in Fernandez, Stein, and Lo 
(2012)—which represents the riskiest portion of 
the drug- development process and where fund-
ing is scarcest. In Simulation A, investments in 
compounds that begin in the preclinical phase 
are sold when they transition to Phase II if they 
are not terminated or sold for other reasons 
earlier.

Table 1 contains a comparison of the results 
for 1,000,000 simulated paths for a traditional 
all-equity fund and a matching RBO structure, 
each capitalized with $3 billion of equity over 
seven and a half years, but in the case of the 
RBO structure, the fund also issues $1.25 bil-
lion of senior debt and $0.75 billion of junior 
debt for a total capitalization of $5 billion.13 
The two columns labeled “Simulation A” show 
that the megafund is almost always profitable. 
The senior-tranche RBO investors received an 
annual coupon of 5 percent, and their  principal 

13 These values differ slightly from the values reported 
in Fernandez, Stein, and Lo (2012) because we are using 
slightly different input parameters and simulation algorithms. 

was repaid in full 99.9 percent of the time, 
which is comparable to historical default rates 
of the highest-rated bonds reported by Moody’s 
and Standard and Poor’s. The junior-tranche 
RBO investors were paid an annual coupon of 
8 percent and repaid in full 99.6 percent of the 
time; and equity-tranche investors received an 
average annualized return of 9.1 percent. In over 
a third of the simulated sample paths the average 
annualized return for equity exceeded 15 per-
cent, versus only about a sixth for the case of the 
equity only fund.

In general, there is a trade-off between skew-
ness and volatility. While the all-equity fund 
exhibits only a modestly lower probability of 
negative returns than the RBO equity tranche, 
it also exhibits a substantially lower  probability 
of very large returns as can be seen in the com-
parative probabilities of returns exceeding 
15 percent.14 Of course, the most significant 
impact of the RBO structure is that it brings 
almost twice as many compounds—103 versus 

14 An open question remains the degree to which RBO 
equity would trade similarly to other structured securi-
ties’ equity, which has traditionally traded infrequently, or 
whether investors would require additional liquidity premia 
for holding RBO equity. 

Table 1—Summary Statistics of Cancer Megafund Simulation for All-Equity (AllEQ) and Debt-and-Equity-
Financed (RBOs) Cases, with (GT) and without (NoGT) Guarantees of Principal

Simulation variable or
summary statistic 

A A1–RBOs A2–RBOs

AllEQ RBOs GT NoGT GT NoGT

Number of compounds to reach Phase II 63.4 103.1 99.0 99.0 103.0 103.0

Liabilities
 Senior tranche ($ million) — 1,250 2,000 2,000 2,000  2,000
 Junior tranche ($ million) —    750    750    750 — —

Equity ($ million) 3,000 3,000 2,250 2,250 3,000 3,000

Guarantee ($ million) — — 1,000 — 1,000 —

Equity tranche performance (in percent)
 Average annualized return on equity 7.9 9.1 8.9 8.9 9.6 9.6
 Prob (return on equity < 0) 15 19 21 21 18 18
 Prob (return on equity > 0.05) 65 69 69 69 70 70
 Prob (return on equity > 0.15) 18 34 41 41 34 34

Debt tranches performance
 Senior tranche: PD, EL (bp) — 0.9, <0.1 0.3, <0.1 49, 8 0.1, <0.1 27, 4
 Junior tranche: PD, EL (bp) — 36, 10 39,15 200, 121 — —

Guarantee cost (2 percent discount rate)
Prob (cost of guarantee > 0) (in percent) — — 2.0 — 0.3 —
Average cost of guarantee ($ million) — — 10  — 0.8 —
98th-percentile draw on guarantee ($ million) — — 17 — 0 —
99th-percentile draw on guarantee ($ million) — — 429 — 0 —
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63—to Phase II as the all-equity fund due to 
financial leverage.

With the addition of a “no strings attached” 
third-party guarantee,15 the capital structure can 
be altered in a number of ways while still preserv-
ing the credit risk profile of the bonds. Table 1 
reports results for a pair of simulation experi-
ments, A1 and A2, that resemble Simulation A, 
but in each case, the capital structure is altered 
to increase the proportion of senior debt by 
reducing a portion of the more-difficult-to-place 
securities. In Simulation A1 a capital structure 
is chosen that reduces the fraction of capital 
allocated to equity and increases the fraction in 
the senior tranche, while in Simulation A2 we 
remove the mezzanine tranche entirely, leaving 
a capital structure allocated only between equity 
and senior debt. In both cases, we start with 
total capital of $5 billion and a guarantee with 
a maximum face value of $1 billion and report 
the comparable no-guarantee results to highlight 
the impact of the guarantee. Not surprisingly, 
the results in Table 1 show that credit losses 
are substantially higher without the guaran-
tee. However, the less obvious result is that the 
expected cost of the guarantee to the provider 
is small relative to the amount guaranteed, with 
an expected loss of 0.1 to 1 percent of the face 
value of the guarantee. In fact, it is likely to be 
much less than the face value as demonstrated in 
the extreme quantiles in Table 1. These results 
suggest that even a small (in expected value) 
third-party guarantee can materially improve the 
economics of an RBO transaction.

As with any numerical simulation, the results 
in Table 1 depend on the various input param-
eters such as cost, revenue, and transition-proba-
bility assumptions, each of which can be debated 
at much greater length. Rather than attempting 
to justify them, we have placed our Matlab and 
R simulation sourcecode in the public domain 
with an open-source license so that others can 
run new simulations with their preferred param-
eters.16 Also, see Fagnan, Stein, and Lo (2012), 
Section 4 for a discussion of some of the limita-
tions and extensions of this framework.

15 A “no strings attached” guarantee is one that does 
not involve any upfront fees, annual premia, or repayment 
of draws on the guarantee; in other words, it is a simple 
guarantee. 

16 http://web.mit.edu/alo/www/RBOtoolbox_final.zip. 

III. Conclusion

Cancer is just one of a growing number of 
large-scale challenges confronting modern 
society that can be addressed only through the 
sustained collaboration of thousands of highly 
skilled, dedicated, and independent individuals 
over many years. Financial engineering meth-
ods such as portfolio theory and securitization 
facilitate such complex collaborations by pro-
viding appropriate financial incentives to all 
stakeholders. Although altruism and charitable 
giving are important elements in responding to 
these challenges, we cannot rely solely on these 
motivations given the scale of the problems to 
be solved. By structuring biomedical research 
funding in a research-backed obligation for-
mat, incentives to reduce the burden of disease 
are distributed to a much broader community of 
stakeholders. As a result, significantly greater 
resources can be marshalled to take on such 
challenges which, in turn, will attract leading 
experts to join the effort, instilling even more 
confidence among investors, and so on. Such 
a “virtuous cycle” presents altruistically moti-
vated organizations with a powerful new tool for 
achieving social impact.

Proposing to raise billions of dollars for bio-
medical research in the current economic cli-
mate may seem ill timed and naïve. However, 
today’s low-interest-rate environment is, in fact, 
ideal for issuing long-term debt, and investors 
around the globe are desperately seeking new 
investment opportunities that are less correlated 
with traditional asset classes. More importantly, 
the cost in terms of burden of disease—as mea-
sured by the more than half a million people 
expected to die of cancer this year in the United 
States alone or the $263 billion in estimated 
economic impact according to American Cancer 
Society (2011)—must be balanced against the 
risk of failure. Similar trade-offs exist for other 
grand challenges of this century such as flu pan-
demics, climate change, and the energy crisis.

Instead of asking whether we can afford to 
invest billions more at this time, perhaps we 
should be asking whether we can afford to wait.
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